Ciao a tutti sto cercando di programmare un chatbot in python ma esce questo errore:
Traceback (most recent call last):
File "/data/user/0/ru.iiec.pydroid3/files/accomp_files/iiec_run/iiec_run.py", line 31, in <module>
start(fakepyfile,mainpyfile)
File "/data/user/0/ru.iiec.pydroid3/files/accomp_files/iiec_run/iiec_run.py", line 30, in start
exec(open(mainpyfile).read(), __main__.__dict__)
File "<string>", line 52, in <module>
NameError: name 'train_x' is not defined
Questo è il codice di programmazione
Codice:
import nltk
nltk.download('punkt')
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
import json
import pickle
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import SGD
words = []
classes = []
documents = []
ignore_words = ['?', '!']
data_file = open('Intents.json').read()
intents = json.loads(data_file)
for intent in intents['intents']:
for pattern in intent['patterns']:
# tokenizzo ogni parola
w = nltk.word_tokenize(pattern)
words.extend(w)
# aggiungo all'array documents
documents.append((w, intent['tag']))
# aggiungo classi al nostro elenco
if intent['tag'] not in classes:
classes.append(intent['tag'])
lemmatizer = WordNetLemmatizer()
words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_words]
training = []
output_empty = [0] * len(classes)
for doc in documents:
# bag of words
bag = []
# lista di token
pattern_words = doc[0]
# lemmatizzazione dei token
pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words]
# se la parola corrisponde inserisco 1, altrimenti 0
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
training.append([bag, output_row])
# creazione del modello
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
#fitting and saving the model
hist = model.fit(np.array(train_x), np.array(train_y), epochs=300, batch_size=5, verbose=1)
model.save('chatbot_model.h5', hist)
print("Modello creato!")
# pre-elaborazione input utente
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# creazione bag of words
def bow(sentence, words, show_details=True):
sentence_words = clean_up_sentence(sentence)
bag = [0]*len(words)
for s in sentence_words:
for i,w in enumerate(words):
if w == s:
bag = 1
if show_details:
print ("found in bag: %s" % w)
return(np.array(bag))
# calcolo delle possibili risposte
def calcola_pred(sentence, model):
p = bow(sentence, words,show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
return return_list
# restituzione della risposta
def getRisposta(ints, intents_json):
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if(i['tag']== tag):
result = random.choice(i['responses'])
break
return result
def conversa(msg):
ints = calcola_pred(msg, model)
res = getRisposta(ints, intents)
print(res)
return res
utente = ''
print('Benvenuto! Per uscire, scrivi "Esci"')
while utente.lower() != 'esci':
utente = str(input(""))
res = conversa(utente)
print('AI:' + res)
Grazie in anticipo per le risposte